Nanoscale thermal control

The ability to tune thermal gradients at the nanoscale has implications in a myriad of fields ranging from data storage to biomedicine. Yet, thermal diffusion acts to minimize any induced thermal gradients. We aim to realize systems that not only maintain exotic thermal gradients, but support thermal patterns that can be actively modified.

Our lab works with a team of collaborators (more info here) to design, build, and measure metal nanostructures that when irradiated will support such thermal properties. Specifically, we are interested in discovering how plasmon coupling and hybridization of metal nanoparticles (from small assemblies to extended lattices) can be used to direct heat to produce tunable thermal designs. Measuring such temperatures at the nanoscale requires our lab to build advanced interferometers, including photothermal imaging / spectroscopy setups and wave-front imaging systems. We utilize these single-particle techniques to measure complex nanostructures and elucidate plasmon heating in hybrid plasmonic systems.

Selected publications:

  1. C. West, S. A. Lee, J. Shooter, E. K. Searles, H. Goldwyn, K. Willets, S. Link, and D. J. Masiello, Nonlinear Effects in Single-Particle Photothermal ImagingJ. Chem. Phys., 158, 024202 (2023)
  2. S. A. Hosseini Jebeli, C. A. West, S. A. Lee, H. J. Goldwyn, C. R. Bilchak, Z. Fakhraai, K. A. Willets, S. Link, and D. J. Masiello, Wavelength-Dependent Photothermal Imaging Probes Nanoscale Temperature Differences among Subdiffraction Coupled Plasmonic Nanorods, Nano Lett., 21 (12), 5386 (2021)
  3. U. Bhattacharjee, C. A. West, S. A. Hosseini Jebeli, H. J. Goldwyn, X.-T. Kong, Zhongwei Hu, E. K. Beutler, W.-S. Chang, K. A. Willets, S. Link, D. J. Masiello, Active Far-Field Control of the Thermal Near-Field via Plasmon Hybridization, ACS Nano, 13(8), 9655 (2019)2019 13 (8), 9655.